This study develops a fault-source-based seismic hazard model for the Leech River Valley Fault (LRVF) and the Devil’s Mountain Fault (DMF) in southern Vancouver Island, British Columbia, Canada. These faults pose significant risks to the provincial capital, Victoria, due to their proximity and potentially large earthquake magnitudes. To evaluate the effects of including these faults in probabilistic seismic hazard analysis and city-wide seismic loss estimation for Victoria, a comprehensive sensitivity analysis is conducted by considering different fault rupture patterns and different earthquake magnitude models, as well as variations in their parameters. The aim is to assess the relative contributions of the LRVF-DMF system to the overall seismic hazard and risk in Victoria at different return periods. The consideration of the LRVF-DMF system as a potential seismic source increases the seismic risk assessment results by 10 to 30%, especially at the high return period levels. The sensitivity analysis results highlight the importance of determining the slip rate for the fault deformation zone and of specifying the earthquake magnitude models (e.g., characteristic versus truncated exponential models). From urban seismic risk management perspectives, these nearby faults should be considered critical earthquake scenarios.
Read full abstract