A porous aromatic framework (PAF) derived from triphenylamine (type PAF-41) was prepared and is shown to be a viable coating for fibrous solid-phase microextraction (SPME). PAF-41 can be easily synthesized and has a high surface area, a rich π-electron structure, and electron-rich nitrogen atoms in its framework. The PAF-41-coated fibrous SPME extractor was combined with a gas chromatographic separation and flame ionization detection. The method was applied to the quantitation of some aromatic organic compounds (AOCs), including polar amphetamine and methamphetamine and nonpolar ethylbenzene, o-, m- and p-xylenes, andstyrene. The method was optimized after which a linear response is found for the 10-500ng·mL-1 amphetamine and methamphetamine concentration ranges. The limits of detection are 1.0 and 0.5ng·mL-1; and relative standard deviations for six repeated extractions with a single fiber are 5.3 and 6.7%. The method was applied for the determination of amphetamine and methamphetamine in spiked urine samples without any pretreatment except for dilution with water. The PAF-41 modified fiber also was applied to the extraction of styrene, xylenes and ethylbenzene. The enrichment capacities of the extractor for these AOCs were superior to those of commercial SPME extractors. Graphical abstract (a) Schemetic of the PAF-41-coated solid-phase microextraction (SPME) fiber.(b) Scanning electron microscope images of the PAF-41fiber.