Worldwide, neurocysticercosis remains an important cause of acquired epilepsy. We therefore seek to investigate the effectiveness of the nanoparticle formulation of cryptolepine in alleviating seizures in a neurocysticercosis model.A solid-lipid nanoparticle formulation of extracted cryptolepine was prepared. The parasites were maintained in T. crassiceps metacestode (ORF strain) - infected female BALB/c mice. Cryp (5 mg/kg), SLN-CRYP (5 mg/kg), ABZ (50 mg/kg) DXM (0.5 mg/kg), and PHE (30 mg/kg).were assessed for in vitro cysticidal, in vivo cysticidal and/or antiseizure activity in 70 mice that had developed seizures from infection with T. crassiceps. General pathologic processes were studied in the host tissue and inflammatory mediators were quantified from isolated mice brains.All treatments (CRYP, SLN-CRYP and ABZ) caused significantly reduced viability of T. crassiceps cysts. Treatment with SLN-CRYP significantly shrunk cysticerci and resolved ventricular expansion and deviation similar to albendazole on examination of encephala. SLN-CRYP inhibited hyperemia but was more effective against microgliosis, calcification, edema and meningitis. Mean seizure score was significantly reduced in models administered with SLN-CRYP (p < 0.0001); as were frequency (p < 0.0001) and duration (p < 0.0001) of seizures. SLN-CRYP significantly reduced brain homogenate levels of IL-10 (p = 0.0016) and IFN-γ (p < 0.0001).Our study shows that the chronic administration of the nanoparticle formulation of cryptolepine is effective in alleviating seizures associated with neurocysticercosis in a mouse model.