The prediction of the ultimate bearing capacity (UBC) of composite foundations represents a critical application of test monitoring data within the field of intelligent geotechnical engineering. This paper introduces an effective combinational prediction algorithm, namely SA-IRMO-BP. By integrating the Improved Radial Movement Optimization (IRMO) algorithm with the simulated annealing (SA) algorithm, we develop a meta-heuristic optimization algorithm (SA-IRMO) to optimize the built-in weights and thresholds of backpropagation neural networks (BPNN). Leveraging this integrated prediction algorithm, we forecast the UBC of soil–cement mixed (SCM) pile composite foundations, yielding the following performance metrics: RMSE = 3.4626, MAE = 2.2712, R = 0.9978, VAF = 99.4339. These metrics substantiate the superior predictive performance of the proposed model. Furthermore, we utilize two distinct datasets to validate the generalizability of the prediction model presented herein, which carries significant implications for the safety and stability of civil engineering projects.