Abstract

The prediction of the ultimate bearing capacity (UBC) of composite foundations represents a critical application of test monitoring data within the field of intelligent geotechnical engineering. This paper introduces an effective combinational prediction algorithm, namely SA-IRMO-BP. By integrating the Improved Radial Movement Optimization (IRMO) algorithm with the simulated annealing (SA) algorithm, we develop a meta-heuristic optimization algorithm (SA-IRMO) to optimize the built-in weights and thresholds of backpropagation neural networks (BPNN). Leveraging this integrated prediction algorithm, we forecast the UBC of soil–cement mixed (SCM) pile composite foundations, yielding the following performance metrics: RMSE = 3.4626, MAE = 2.2712, R = 0.9978, VAF = 99.4339. These metrics substantiate the superior predictive performance of the proposed model. Furthermore, we utilize two distinct datasets to validate the generalizability of the prediction model presented herein, which carries significant implications for the safety and stability of civil engineering projects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.