Abstract

Cement-sand reinforced soft clay (C-SRSC) is a complex multiphase geomaterial. Its strength is determined by the physical properties of the internal multiphase substances and the coupling mechanical response between various phases of substances. By considering the effect of the particle size and content of sand particles on the unconfined compressive strength (UCS) and failure mechanism of C-SRSC, the C-SRSC is divided into two phases of the cement soil matrix and sand particles to construct a micro cell model of C-SRSC. Based on the strain gradient theory, the theoretical model of the UCS of C-SRSC based on the physical mechanism at the microscale is derived. Forty five groups of UCS tests were conducted to analyze the effect of sand particle size and content on the UCS of C-SRSC, and to calculate the theoretical model parameters. The results show that the UCS of C-SRSC increases with increasing curing age, cement content, and sand particle content, and decreases with the increasing sand particle size. The theoretical model of the UCS of C-SRSC based on physical mechanism initially verified the consistency of the experimental and theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.