Obstructive sleep apnea (OSA) is associated with seasonal variations. The objective of this study was to examine associations of ambient relative humidity (RH) and temperature on sleep parameters. We conducted a cross-sectional study by retrospectively recruiting 5204 adults from a sleep center in Taipei, Taiwan. Associations of 1-night polysomnography with ambient RH and temperature in 1-day, 7-day, 1-month, 6-month, and 1-year averages were examined using linear regression models and a mediation analysis. RH increase was associated with snoring index decrease and apnea/hypopnea index (AHI) increase. Temperature increase was associated with decreases in sleep efficiency and the AHI, and increases in the wake time after sleep onset and snoring index. RH increase was inversely associated with non-rapid eye movement (NREM) sleep stage I (N1), III (N3), and rapid eye movement (REM) sleep, but positively associated with the NREM sleep stage II (N2) stage. Temperature increase was associated with N1, N2, and N3 sleep. An increase in RH was associated with an increase in the arousal index and a decrease in the < 95% arterial oxygen saturation (SaO2) among total, REM, and NREM sleep, whereas a temperature increase was associated with a decrease in the arousal index and an increase in < 95% SaO2 among total, REM, and NREM sleep. An increase in RH was associated with increases in the time spent in a supine posture and the supine AHI. An increase in temperature was associated with decreases in the supine posture, supine AHI, and non-supine AHI. The N3 sleep stage was an important mediator in increasing the supine AHI with a long-term increase in RH. But the N1 and N2 sleep stages mediated a decrease in the supine AHI with an increase in RH. In conclusion, ambient RH and temperature were associated with alterations in sleep parameters in adults, which were mediated by the sleep cycle. An understanding of outdoor environments has important implications for diagnostic classifications in the supine dominance of OSA in adults.