For next-generation superconducting radiofrequency (SRF) cavities, the interior walls of existing Nb SRF cavities are coated with a thin Nb3Sn film to improve the superconducting properties for more efficient, powerful accelerators. The superconducting properties of these Nb3Sn coatings are limited due to inhomogeneous growth resulting from poor nucleation during the Sn vapor diffusion procedure. To develop a predictive growth model for Nb3Sn grown via Sn vapor diffusion, we aim to understand the interplay between the underlying Nb oxide morphology, Sn coverage, and Nb substrate heating conditions on Sn wettability, intermediate surface phases, and eventual Nb3Sn nucleation. In this work, Nb-Sn intermetallic species are grown on a single crystal Nb(100) in an ultrahigh vacuum chamber equipped with in situ surface characterization techniques including scanning tunneling microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Sn adsorbate behavior on oxidized Nb was examined by depositing Sn with submonolayer precision on a Nb substrate held at varying deposition temperatures (Tdep). Experimental data of annealed intermetallic adlayers provide evidence of how Nb substrate oxidization and Tdep impact Nb-Sn intermetallic coordination. The presented experimental data contextualize how vapor and substrate conditions, such as the Sn flux and Nb surface oxidation, drive homogeneous Nb3Sn film growth during the Sn vapor diffusion procedure on Nb SRF cavity surfaces. This work, as well as concurrent growth studies of Nb3Sn formation that focus on the initial Sn nucleation events on Nb surfaces, will contribute to the future experimental realization of optimal, homogeneous Nb3Sn SRF films.
Read full abstract