During our exploration of compounds in the Sn(II)-Ti(IV)-O system, we discovered that hydrolysis of titanium alkoxide solution in the presence of Sn(II) salts resulted in stable deep-yellow colored anatase nanoparticles. The samples were characterized by X-ray powder diffraction, electron microprobe, thermal analysis, transmission electron microscopy, and (119)Sn Mössbauer spectroscopy. Mössbauer data of the yellow colored samples showed the presence of both Sn(II) and Sn(IV) in a distorted environment as expected in the anatase structure. It is suggested that the cationic charge imbalance is compensated by oxygen vacancies and/or hydroxyl groups as evidenced by Mössbauer data which show two types of Sn(II) environments. When heated in air to 300 degrees C the samples changed color to completely white and (119)Sn Mössbauer data of these samples showed only the presence of Sn(IV). These observations indicate that the origin of the yellow color in our Sn doped anatase nanoparticles arises from filled Sn 5s states just above the O 2p band, thus decreasing the band gap. The Sn(II) doped anatase TiO(2) nanoparticles reported here can potentially lead to environmentally benign yellow pigments. The simplistic nature of the synthetic procedure could easily be adapted to large-scale industrial manufacture.
Read full abstract