Abstract
Some results are given from a cluster approach for the electronic structure of the SnO 2 (110) face together with some oxygen vacancies and ‘adsorbates’. Computations are based on ab initio methods, the local-density approximation and atomic orbitals as a basis set. Solutions were calculated self-consistently, but also using a composition of atomic potentials (for some smaller clusters). The atomic-orbital nature (origin) of the cluster levels was traced by projection onto the atomic bases set. The results here refer to a basic cluster [SnO 2 13 with 17 surface atoms moedelling the SnO 2 (110) face and the other 22 atoms in the next five suface layers. The effect of oxyggen ’adsrobates‘ and oxygen vacancies in the few uppermost subsurface layers on the electronic structure was considered. In particular, the focus was on the levels related to oxygen vacancies and originating from Sn 5s orbitals, which are well-known donor levels in the deep bulk, making SnO 2 an n-type semiconductor. The results support some other theoretical and experimental predictions that oxygen vacancies behave as neutral defects at or near SnO 2 surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.