Abstract Cloud and precipitation microphysics in tropical cyclones (TCs) moving toward Northeast China may exhibit significant distinctions compared with the typical precipitation of this region. In this study, observations from ground-based particle size velocity (Parsivel) disdrometers in Liaoning Province, China, and cloud property data from the Himawari geostationary satellite were utilized to analyze the raindrop size distribution (DSD) characteristics and cloud vertical evolution associated with the outer rainbands of Typhoon Maysak (2020). A comparative analysis was conducted with a typical precipitation event in Northeast China induced by a cold vortex (cold-core low). Our findings reveal distinctive DSD characteristics related to the TC, where medium-sized raindrops dominate, with a smaller diameter but higher concentration in the TC case compared to the typical cold-vortex-induced precipitation case in Northeast China. Convective precipitation falls between maritime-like and continental-like patterns, leaning more toward continental convection. This varies significantly with TCs in Southeast China but is similar to that observed in coastal-front-like rainbands, suggesting extratropical influence. A detailed analysis of the vertical profile of cloud droplets shows a unique “top-down” phenomenon during the extratropical transition process of the TC, where the development of lower-level clouds follows that of upper-level clouds, inconsistent with previous studies and the case for comparison. Further investigation indicates the significant role of the intrusion of dry and cold air from upper levels and the presence of high humidity in low levels in driving this phenomenon. Our results will provide novel insights into cloud and precipitation microphysics associated with TCs in midlatitude regions.
Read full abstract