The article discusses the algorithms employed in automated systems for master production scheduling in the applicability of their produce-to-order furniture. Small batch and custom production of furniture occupies a significant market share, as we do, and in the countries of Western Europe. Also, it is a prospective direction of development for other industries, focused on the end user. Most of the existing national planning systems designed for large-scale and mass production, in which the main role takes enterprise performance. Therefore, the main indicator, which is used by the optimization of scheduling, is the moment of completion of the last job. However, custom production is much more complex factors affecting the success of the enterprise as a whole: a key indicator in this case is the completion of all work no later than the specified time, not their early completion (within the terms established by treaties with customers). Also in the custom and small-scale production, it takes an important role time index spent on readjustment of the equipment associated with the transition to a different type of output. If these and other indicators do not have a significant role in large-scale production, the small-scale productions of these indicators have a significant impact on the performance of the enterprise, and they can no longer be neglected. In this paper, the three most promising mathematical algorithms (algorithm simulated annealing, genetic algorithm and artificial neural network), which allow us to optimize schedules based on several criteria applied to the problem of master production scheduling, customized production of furniture.
Read full abstract