Abstract

Reduction of the time and cost during the research and development stage of a new product is an important issue. Rapid tooling techniques can reduce the time to market compared to conventional machining approaches. In general, reduction in cooling time plays an important role on cycle time in manufacturing time. Wax injection mold fabricated from aluminum-filled epoxy resin can be employed for small-batch productions of wax patterns. However, the cooling time is much longer compared to metallic wax injection molds due to poorer thermal conductivity. In this study, three kinds of cooling-channel layouts were employed to fabricate wax injection molds for low-pressure wax injection molding using rapid prototyping and rapid tooling techniques. The effects of three kinds of wax injection molds on the cooling time during the low-pressure wax injection molding were investigated. It was found that the reduction in cooling time about 87% can be obtained when a wax injection mold with conformal cooling channels is compared to a conventional wax injection mold fabricated by Al-filled epoxy resin. The manufacturing cost reduction for a wax injection mold with high cooling efficiency about 63% can be obtained using the method proposed in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call