Abstract

Incremental Sheet Forming (ISF) has been developed as a flexible manufacturing technology for small batch production and prototyping. ISF can also be used to form additional features or stiffening elements such as hole flanges. Incremental Hole Flanging (IHF) operations seem to be a promising alternative to conventional hole flanging. If it was possible to exploit the extended formability of ISF while achieving accuracy and process times of conventional hole flanging, IHF could substitute conventional flanging operations in many cases. However, the long process times and limited geometrical accuracy hinder industrial take-up. In this work, two different tooling concepts which allow incremental hole flanging operations at high speeds are investigated. The first tool is designed as a single forming tool that offers high flexibility and a comparison to conventional Incremental Hole Flanging. The second tool consists of four forming tools to improve the geometrical accuracy of hole flanges. In order to achieve high speeds, the experimental setup is installed on a turning machine. Compared to hole flanging with a conventional CNC machine, the forming time to expand a hole from 50 mm to 100 mm could be reduced from 1680 s to 15.7 s. The geometrical accuracy of the parts formed with the second tool concept could be improved significantly (up to 3 times regarding to the mean surface deviation to at maximum speed). Furthermore, it is shown that forming at high speeds has no significant influence on the characteristics of sheet thickness, strain, forces or geometrical accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call