Genetic improvement of livestock productivity has resulted in greater production of metabolic heat and potentially greater susceptibility to heat stress. Various studies have demonstrated that there is genetic variability for heat tolerance and genetic selection for more heat tolerant individuals is possible. The rate of genetic progress tends to be greater when genomic information is incorporated into the analyses as more accurate breeding values can be obtained for young individuals. Therefore, this study aimed (1) to evaluate the predictive ability of genomic breeding values for heat tolerance based on routinely recorded traits, and (2) to investigate the genetic background of heat tolerance based on single-step genome-wide association studies for economically important traits related to body composition, growth and reproduction in Large White pigs. Pedigree information was available for 265,943 animals and genotypes for 8686 animals. The studied traits included ultrasound backfat thickness (BFT), ultrasound muscle depth (MDP), piglet weaning weight (WW), off-test weight (OTW), interval between farrowing (IBF), total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets born dead (NBD), number of piglets weaned (WN) and weaning-to-estrus interval (IWE). The number of phenotypic records ranged from 6059 (WN) to 172,984 (TNB). Single-step genomic reaction norm predictions were used to calculate the genomic estimated breeding values for each individual. Predictions of breeding values for the validation population individuals were compared between datasets containing phenotypic records measured in the whole range of temperatures (WR) and datasets containing only phenotypic records measured when the weather station temperature was above 10°C (10C) or 15°C (15C), to evaluate the usefulness of these datasets that may better reflect the within-barn temperature. The use of homogeneous or heterogeneous residual variance was found to be trait-dependent, where homogeneous variance presented the best fit for MDP, BFT, OTW, TNB, NBA, WN and IBF, while the other traits (WW and IWE) had better fit with heterogeneous variance. The average prediction accuracy, dispersion and bias values considering all traits for WR were 0.36 ± 0.05, -0.07 ± 0.13 and 0.76 ± 0.10, respectively; for 10C were 0.39 ± 0.02, -0.05 ± 0.07 and 0.81 ± 0.05, respectively; and for 15C were 0.32 ± 0.05, -0.05 ± 0.11 and 0.84 ± 0.10, respectively. Based on the studied traits, using phenotypic records collected when the outside temperature (from public weather stations) was above 10°C provided better predictions for most of the traits. Forty-three and 62 candidate genomic regions were associated with the intercept (overall performance level) and slope term (specific biological mechanisms related to environmental sensitivity), respectively. Our results contribute to improve genomic predictions using existing datasets and better understand the genetic background of heat tolerance in pigs. Furthermore, the genomic regions and candidate genes identified will contribute to future genomic studies and breeding applications.
Read full abstract