Abstract

The precision of numerical overland flow models is limited by their computational cost. A GPU-accelerated 2D shallow flow model is developed to overcome this challenge in this study. The model employs a Godunov-type finite volume method (FVM) to solve shallow water equations (SWEs) with unstructured grids, while also considering rainfall, infiltration, bottom slope, and friction source terms. The numerical simulation demonstrates that this model has well-balanced and robust properties. In an experiment of urban rain-runoff and flood, the accuracy and stability of the model are further demonstrated. The model is programmed with CUDA, and each numerical computation term is processed in parallel to adopt multi-thread GPU acceleration technology. With the GPU computation framework, this model can achieve a speeding up ration around 75 to single-thread CPU in the dam-break flow for a large-scale application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call