We deal with existence and uniqueness of positive solutions of an elliptic boundary value problem modeled by−Δpu=fuγ+guqinΩ,u=0on∂Ω,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\left \\{\\begin {array}{ll} \\displaystyle -{\\Delta }_{p} u= \\frac {f}{u^{\\gamma }} + g u^{q} & \ ext { in } {\\Omega }, \\\\ u = 0 & \ ext {on } \\partial {\\Omega }, \\end {array}\\right . $$\\end{document} where Ω is an open bounded subset of mathbb {R}^{N} where Ω is an open bounded subset of mathbb {R}^{N}, Δpu := ÷(|∇u|p− 2∇u) is the usual p-Laplacian operator, γ ≥ 0 and 0 ≤ q ≤ p − 1; f and g are nonnegative functions belonging to suitable Lebesgue spaces.
Read full abstract