Two approaches have been utilized to optimize the energy storage characteristics of doped carbon materials derived from Lignosol, a biomass product, to address the rising energy demand issues. Herein, phosphorus and nitrogen co-doped carbon (PNDC) materials with varying doping agent volumes were synthesized by utilizing microwave irradiation. Chemical activation and physical activation were employed to enhance these materials’ characteristics. Chemical activation was performed in a one-pot, single-step process, rather than a traditional multi-step protocol, using small amounts of potassium hydroxide. Furthermore, the physical activation method required multiple steps: doped carbon was prepared via microwave, exposed to water, filtered, frozen and then dried. With this, the expansion properties of water at freezing temperatures were exploited to alter the materials’ surface characteristics. All materials were characterized and compared for their physicochemical properties. All defect ratios supported the presence of doping. Additional results revealed that both chemical and physical activation approaches effectively modify the topographical features as well as the electrochemical activity (charge storage) of the doped carbon materials. The chemically activated doped carbon exhibited the highest resulting surface area of 1352 m2 g−1 and a specific capacitance value of 347 F g−1 with excellent cycling stability as compared to other similarly synthesized materials.
Read full abstract