The effect of various hormones on the activities of the four enzymes engaged with the biosynthesis of the polyamines has been investigated in the rat. Human choriogonadotropin induced a dramatic, yet transient, stimulation of l-ornithine decarboxylase (EC 4.1.1.17) activity in rat ovary, with no or only marginal changes in the activities of S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (aminopropyltransferase; EC 2.5.1.16) or spermine synthase. A single injection of oestradiol into immature rats maximally induced uterine ornithine decarboxylase at 4h after the injection. This early stimulation of ornithine decarboxylase activity was accompanied by a distinct enhancement of adenosylmethionine decarboxylase activity and a decrease in the activities of spermidine synthase and spermine synthase. In the seminal vesicle of castrated rats, testosterone treatment elicited a striking and persistent stimulation of ornithine decarboxylase and adenosylmethionine decarboxylase activities. The activity of spermidine synthase likewise rapidly increased between the first and the second day after the commencement of the hormone treatment, whereas the activity of spermine synthase remained virtually unchanged during the whole period of observation. Testosterone-induced changes in polyamine formation in the ventral prostate were comparable with those found in the seminal vesicle, with the possible exception of a more pronounced stimulation of spermidine synthase activity. It thus appears that an enhancement in one or both of the propylamine transferase (aminopropyltransferase) activities in response to hormone administration is an indicator of hormone-dependent growth (uterus and the male accessory sexual glands), and is not necessarily associated with non-proliferative hormonal responses, such as gonadotropin-induced luteinization of the ovarian tissue.
Read full abstract