This paper reports a dual-butterfly structure gyroscope based on the traditional butterfly structure. This novel structure is composed of two butterfly structures, each of which contains a main vibrational beam, four proof masses, and a coupling mechanism. The coupling mechanism in this proposed structure couples the two single butterfly structures and keeps the driving mode phases of the two single butterfly gyroscopes exactly opposite, increasing the double difference of traditional butterfly gyroscopes to a quad difference, which has the potential advantage of improving bias instability and g-sensitivity. The gyroscope was fabricated using a standard microfabrication method and tested in laboratory conditions. The experimental results show a Q-factor of 10,967 in driving mode and there were two peaks in the frequency responses curve of sensing direction due to unavoidable fabrication errors. Scale factor and bias instability were also measured, reaching a scale factor of 10.9 mV/°/s and a bias instability of 10.7°/h, according to the Allan Variance curve.
Read full abstract