Hydrogen production from renewable resources via microbial electrolysis cells (MECs) is a promising approach for sustainable energy production. Yet high hydrogen yield from real feedstocks has not been demonstrated in up-scaled MECs. In this study, a 10-L single chamber MEC with a high electrode surface area to volume ratio (66 m2/m3) was constructed and electroactive cathodic biofilms were enriched for hydrogen evolution reaction. A high hydrogen yield of 91% was achieved using lignocellulosic hydrolysate with a hydrogen production rate of 0.71 L/L/D at an organic loading rate of 0.4 g/D. The anodic and cathodic microbial communities, with Enterococcus spp. as the known electroactive bacteria, were capable of achieving current densities of 13.7 A/m2 and 16.5 A/m2, respectively. A machine learning algorithm was used to investigate the correlation between community data and electrochemical performance, and the critical genera on determining current density were identified.
Read full abstract