Abstract

Hydrogen production from renewable resources via microbial electrolysis cells (MECs) is a promising approach for sustainable energy production. Yet high hydrogen yield from real feedstocks has not been demonstrated in up-scaled MECs. In this study, a 10-L single chamber MEC with a high electrode surface area to volume ratio (66 m2/m3) was constructed and electroactive cathodic biofilms were enriched for hydrogen evolution reaction. A high hydrogen yield of 91% was achieved using lignocellulosic hydrolysate with a hydrogen production rate of 0.71 L/L/D at an organic loading rate of 0.4 g/D. The anodic and cathodic microbial communities, with Enterococcus spp. as the known electroactive bacteria, were capable of achieving current densities of 13.7 A/m2 and 16.5 A/m2, respectively. A machine learning algorithm was used to investigate the correlation between community data and electrochemical performance, and the critical genera on determining current density were identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call