We report the enhanced electrical conductivity properties of single gold-peapodded amorphous silica nanowires synthesized using microwave plasma enhanced chemical vapor deposition. Dark conductivity of the gold-peapodded silica nanowires can be adjusted by controlling the number of incorporated metal nanoparticles. The temperature-dependent conductivity measurement reveals that the band tail hopping mechanism dominates the electron transport in the gold-peapodded silica nanowires. The high conductivity in the nano-peapodded nanowires with more embedded gold-nanoparticles can be explained by the higher density of hopping states and shorter hopping distance. These Au-embedded amorphous silica nanowires have provided a new approach to enhance not only the electron conduction, but also the chemical-sensor response/sensitivity.
Read full abstract