This article presents a methodology for functionalization of silicon carbide (SiC) through chemical modification using γ-aminopropyltriethoxysilane (APTES) and its subsequent dispersion in an epoxy composition. The research revealed that functionalizing SiC particles with γ-aminopropyltriethoxysilane (SiC(APTES)) enhanced their chemical compatibility with the epoxy composition, facilitating the dispersion of SiC particles. Furthermore, it was observed that the functionalization of the filler had a profound impact on the structure, curing kinetics, and physical and mechanical properties of epoxy nanocomposites. The addition of SiC(APTES) into the epoxy composition resulted in a significant reinforcement of the material. Specifically, the flexural stress and flexural modulus of elasticity increased by 179% and 74%, respectively, while the impact strength experienced a remarkable improvement of 462%. Additionally, the tensile strength and tensile modulus of elasticity increased by 83% and 70%, respectively, compared to the epoxy composite without SiC. The application of SiC(APTES) also played a crucial role in initiating the polymerization process through the involvement of reactive amino groups, leading to a reduction in the initial curing temperature and an amplification of the thermal effects of the polymerization reaction. Moreover, the presence of functionalized SiC significantly influenced the structure of the epoxy composite, thereby contributing to its enhanced strength. In summary, the inclusion of SiC in the epoxy composition not only bolstered the material but also improved its thermal stability.
Read full abstract