This study aims to investigate the previously reported dependency of intravoxel incoherent motion (IVIM) parameters on simultaneous multislice (SMS) acquisition and repetition time (TR). This includes the influence of slice thickness, slice gaps, and slice order on measured IVIM parameters. Diffusion-weighted imaging (DWI) of the liver was performed on 10 healthy volunteers (aged 20-30 years) at 3T with a slice thickness of 5 mm, a slice gap of 5 mm, and a linear slice order. Diffusion-weighted images were acquired with 19 b-values (0-800 s/mm2) using both conventional slice excitation with an acceleration factor of one (AF1) and SMS excitation with an acceleration factor of three (AF3). Each of these measurements were carried out with two repetition times (TRs)- 1,300 ms (prefix s) and 4,500 ms (prefix l)-resulting in four different combinations: sAF1, sAF3, lAF1, and lAF3. Five volunteers underwent additional measurements using a 10 mm slice thickness and with AF1. Median signal values in the liver were used to determine the biexponential IVIM parameters. Statistical significances were assessed using the Kruskal-Wallis test, Wilcoxon signed-rank test, and Student's t-test. In-silico investigations were also used to interpret the data. There were no significant differences between the biexponential IVIM parameters acquired from sAF1, sAF3, lAF1, and lAF3. Median values of the perfusion fraction f were as follows: 29.9% (sAF1), 26.9% (sAF3), 28.1% (lAF1), and 27.5% (lAF3). In the 10 mm-thick slices, f decreased from 31.3% (lAF1) to 27.4% (sAF1) (p = 0.141). The slice excitation mode did not appear to have any significant influence on the biexponential IVIM parameters. However, our simulations, as well as values reported from previous publications, show that slice thickness, slice gaps, and slice order are relevant and should thus be reported in IVIM studies.