Abstract
BackgroundHistamine is a kind of biogenic amine with strong toxicity and potential carcinogenicity. Many traditional methods of detecting histamine have the disadvantages of cumbersome detection steps, expensive equipment, and high professional requirements for staff. In contrast, SERS has become the preferred method for quantitative analysis of histamine because of rich fingerprint information, rapidity and economy. However, most of SERS substrates still have technical problems, such as poor stability, low sample collection rate, and detection efficiency. Therefore, there is a great need for new strategies to develop high-performance SERS substrates based sensors. ResultsIn our study, a sensitive SERS aptasensor for the detection of histamine was synthesized. The assembly was formed between IRMOF-3@Au/PDMS (flexible SERS substrate) and AuNR-DTNB@Ag-HA apt (Raman signal probe with both the target capture ability) via π-π stacking interaction from HA aptamer and IRMOF-3. Consequently, the SERS signal of the assembly derived from DTNB reached highest due to the synergistic enhancement effect by AuNR@Ag and IRMOF-3@Au. Meanwhile, HA aptamer can specifically capture histamine, therefore histamine addition competitively bound to the probe, leading to a corresponding decrease in the DTNB signal value on the SERS substrate. The SERS intensity at 1331 cm−1 presented a good linear relationship towards the logarithmic value of histamine concentrations ranging from 0.0001 mg/L to 400 mg/L (R2 = 0.990) with the LOD of 3.6 × 10−5 mg/L. Furthermore, the application in wine samples demonstrated the accuracy and applicability of the developed sensor. SignificanceThis method effectively improves substrate stability, detection sensitivity and signal response immediacy to amplify the SERS sensor, thus satisfying the histamine detection requirements of various systems. According to this aptasensor design, our strategy can be extended to create other MOF-based SERS substrates for accurately detecting relative targets to ensure food safety.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have