Wind speed forecasting is an essential part of weather prediction, with significant value in economics, business, and management. Utilizing multiple meteorological variables can improve prediction accuracy, but existing methods face challenges such as mixing and noise due to variable differences, as well as difficulty in capturing complex spatio-temporal dependencies. To address these issues, this study introduces a novel short-term wind speed forecasting model named as MIESTC. The proposed model employs an independent encoder to extract features from each meteorological variable, mitigating the issues of noise that are caused by variable mixing. Then, a multivariate spatio-temporal correlation module is used to capture the global spatio-temporal dependencies between variables and model their interactions. Experimental results on the ERA5-LAND dataset show that, compared to the ConvLSTM, UNET, and SimVP models, the MIESTC model reduces RMSE by 14.60%, 8.64%, and 10.41%, respectively, for a 1 h prediction duration. For a 6 h prediction duration, the corresponding reductions are 13.91%, 8.20%, and 6.95%, validating its superior performance in short-term wind speed forecasting. Furthermore, an analysis of variable impacts reveals that U10, V10, and T2M play dominant roles in wind speed prediction, while TP exhibits a relatively lower impact, aligning with the results of the correlation analysis. These findings underscore the potential of MIESTC as an effective and reliable tool for short-term wind speed prediction.
Read full abstract