Abstract

To solve the problem of photovoltaic power prediction in areas with large climate changes, this article proposes a hybrid Long Short-Term Memory method to improve the prediction accuracy and noise resistance. It combines the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and kernel principal component analysis (KPCA) algorithm. The ICEEMDAN algorithm reduces the instability of the environmental factor sequence. The KPCA algorithm reduces the input dimensions of the model. LSTM performs dynamic time modeling of the multivariate feature sequences to predict the output PV power. The adaptability of the ICEEMDAN-KPCA-LSTM model is assessed with datasets from a PV plant in west China and evaluated by root mean squared error (RMSE), mean absolute percentage error (MAPE), and R-squared metrics. Using 70% of the datasets for output PV power estimation, the results show a good performance, with an RMSE of 4.3715, MAPE of 8.9264%, and R-squared value of 89.973%. By comparing with other prediction models, the ICEEMDAN-KPCA-LSTM photovoltaic output power model outperforms other models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.