Initial pressures and expansion speeds of air shock waves, driven by single-shot femtosecond laser ablation of titanium surface at fluences up to 6 J/cm2, were acquired by means of front-side non-contact time-of-flight ultrasonic measurements. Similar contact ultrasonic measurements on the rear side of the titanium target demonstrate general correlation of ultrasonic amplitudes the measured in the contact and non-contact modes at high ablative pressures (above 100 GPa, superelastic propagation regime), and strong deviation of these dependences at lower ablative pressures (strong dissipation regime) without any indications of new titanium phases, besides the initial α-Ti phase.
Read full abstract