Abstract
Accurate measurement of high-amplitude, broadband shock pulses in air is an important part of laboratory-scale experiments in atmospheric acoustics. Although various methods have been developed, specific drawbacks still exist and need to be addressed. Here, a schlieren optical method was used to reconstruct the pressure signatures of nonlinear spherically diverging short acoustic pulses generated using an electric spark source (2.5 kPa, 33 μs at 10 cm from the source) in homogeneous air. A high-speed camera was used to capture light rays deflected by refractive index inhomogeneities, caused by the acoustic wave. Pressure waveforms were reconstructed from the light intensity patterns in the recorded images using an Abel-type inversion method. Absolute pressure levels were determined by analyzing at different propagation distances the duration of the compression phase of pulses, which changed due to nonlinear propagation effects. Numerical modeling base on the generalized Burgers equation was used to evaluate the smearing of the waveform caused by finite exposure time of the high-speed camera and corresponding limitations in resolution of the schlieren technique. The proposed method allows the study of the evolution of spark-generated shock waves in air starting from the very short distances from the spark, 30 mm, up to 600 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.