Unsaturated soil covers a significant part of the world, and studying the behavior of deep foundations in this medium is an important step in increasing accuracy and economic efficiency in geotechnical studies. This paper presents an analytical solution to investigate the load-carrying characteristics of single piles embedded in unsaturated soils, accounting for the effect of groundwater level on the pile’s response. For this purpose, relationships for shear modulus and Poisson’s ratio for unsaturated soils were collected from the literature to consider their effects as key parameters on pile performance. A parametric study was conducted to evaluate the effect of soil moisture content on the behavior of the pile-soil system for different soil types, and the effect of pile slenderness on its load-settlement behavior was studied for varying soil moisture contents. The results indicate that the pile stiffness increases as the soil suction increases while below a critical slenderness value, hence increasing the pile load capacity. However, this improvement occurs within a limited range of soil suction that is narrower for coarse-grained soils. The pile settlement corresponding to soil failure was also evaluated by modifying the existing solutions for unsaturated soils. The developed solutions were verified against the predictions of published solutions as well as the results of finite element analysis and pile load tests. It was found that the system stiffness decreases by 50% when the water table rises from the pile toe level to the ground surface in the studied soil.
Read full abstract