Abstract

This study conducted both three-dimensional physical model tests and numerical back-analyses to examine the performance of a single pile subjected to twin tunnelling beneath the pile toe in dry sand. Moreover, numerical parametric analyses were carried out to assess the impact of working load level and tunnel volume loss on pile behaviour. The findings revealed that the first tunnelling induced a 1.9% dp (pile diameter) settlement in the pile when the pile toe was 0.5 D (tunnel diameter) above the twin tunnels, which had a 1.0% volume loss. The settlement was accompanied by an upward load transfer mechanism. The second tunnelling had a reduced impact and induced only 76% of the settlement caused by the first tunnelling. The study also showed that tunnelling-induced shearing behaviours weakened beneath the pile toe with a decrease in working load, resulting in reduced pile head settlement. Moreover, the computed pile settlement increased by 178% when the tunnel volume loss increased from 0.5% to 2%. The findings of this study offer valuable data for the validation and calibration of numerical models. In addition, the outcome from this study provides useful insights into the prediction of the pile-soil-tunnel interaction when subjected to twin tunnelling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call