This study explores the impact of runoff curve number (CN) on the hydrological model outputs for the Morai watershed, Sindh-Pakistan, using the Soil Conservation Service Curve Number (SCS-CN) method. The SCS-CN method is an empirical technique used to estimate rainfall-runoff volume from precipitation in small watersheds, and CN is an empirically derived parameter used to calculate direct runoff from a rainfall event. CN depends on soil type, its condition, and the land use and land cover (LULC) of an area. Precise knowledge of these factors was not available for the study area, and therefore, a range of values was selected to analyze the sensitivity of the model to the changing CN values. Sensitivity analysis involves a methodological manipulation of model parameters to understand their impacts on model outputs. A range of CN values from 40-90 was selected to determine their effects on model results at the sub-catchment level during the historic flood year of 2010. The model simulated 362 cumecs of peak discharge for CN=90; however, for CN=40, the discharge reduced substantially to 78 cumecs (a 78.46% reduction). Event-based comparison of water volumes for different groups of CN values—90-75, 80-75, 75-70, and 90-40 —showed reductions in water availability of 8.88%, 3.39%, 3.82%, and 41.81%, respectively. Although it is known that the higher the CN, the greater the discharge from direct runoff and the less initial losses, the sensitivity analysis quantifies that impact and determines the amount of associated discharges with changing CN values. The results of the case study suggest that CN is one of the most influential parameters in the simulation of direct runoff. Knowledge of accurate runoff is important in both wet (flood management) and dry periods (water availability). A wide range in the resulting water discharges highlights the importance of precise CN selection. Sensitivity analysis is an essential facet of establishing hydrological models in limited data watersheds. The range of CNs demonstrates an enormous quantitative consequence on direct runoff, the exactness of which is necessary for effective water resource planning and management. The method itself is not novel, but the way it is proposed here can justify investments in determining the accurate CN before initiating mega projects involving rainfall-runoff simulations. Even a small error in CN value may lead to serious consequences. In the current study, the sensitivity analysis challenges the strength of the results of a model in the presence of ambiguity regarding CN value.
Read full abstract