Telemedicine is an emerging development in the healthcare domain, where the Internet of Things (IoT) fiber optics technology assists telemedicine applications to improve overall digital healthcare performances for society. Telemedicine applications are bowel disease monitoring based on fiber optics laser endoscopy, gastrointestinal disease fiber optics lights, remote doctor-patient communication, and remote surgeries. However, many existing systems are not effective and their approaches based on deep reinforcement learning have not obtained optimal results. This paper presents the fiber optics IoT healthcare system based on deep reinforcement learning combinatorial constraint scheduling for hybrid telemedicine applications. In the proposed system, we propose the adaptive security deep q-learning network (ASDQN) algorithm methodology to execute all telemedicine applications under their given quality of services (deadline, latency, security, and resources) constraints. For the problem solution, we have exploited different fiber optics endoscopy datasets with images, video, and numeric data for telemedicine applications. The objective is to minimize the overall latency of telemedicine applications (e.g., local, communication, and edge nodes) and maximize the overall rewards during offloading and scheduling on different nodes. The simulation results show that ASDQN outperforms all telemedicine applications with their QoS and objectives compared to existing state action reward state (SARSA) and deep q-learning network (DQN) policy during execution and scheduling on different nodes.
Read full abstract