Predicting the polyproline type II (PPII) helix structure is crucial important in many research areas, such as the protein folding mechanisms, the drug targets, and the protein functions. However, many existing PPII helix prediction algorithms encode the protein sequence information in a single way, which causes the insufficient learning of protein sequence feature information. To improve the protein sequence encoding performance, this paper proposes a BERT-based PPII helix structure prediction algorithm (BERT-PPII), which learns the protein sequence information based on the BERT model. The BERT model's CLS vector can fairly fuse sample's each amino acid residue information. Thus, we utilize the CLS vector as the global feature to represent the sample's global contextual information. As the interactions among the protein chains' local amino acid residues have an important influence on the formation of PPII helix, we utilize the CNN to extract local amino acid residues' features which can further enhance the information expression of protein sequence samples. In this paper, we fuse the CLS vectors with CNN local features to improve the performance of predicting PPII structure. Compared to the state-of-the-art PPIIPRED method, the experimental results on the unbalanced dataset show that the proposed method improves the accuracy value by 1% on the strict dataset and 2% on the less strict dataset. Correspondingly, the results on the balanced dataset show that the AUCs of the proposed method are 0.826 on the strict dataset and 0.785 on less strict datasets, respectively. For the independent test set, the proposed method has the AUC value of 0.827 on the strict dataset and 0.783 on the less strict dataset. The above experimental results have proved that the proposed BERT-PPII method can achieve a superior performance of predicting the PPII helix.
Read full abstract