Abstract
Protein is closely related to life activities. As a kind of protein, DNA-binding protein plays an irreplaceable role in life activities. Therefore, it is very important to study DNA-binding protein, which is a subject worthy of study. Although traditional biotechnology has high precision, its cost and efficiency are increasingly unable to meet the needs of modern society. Machine learning methods can make up for the deficiencies of biological experimental techniques to a certain extent, but they are not as simple and fast as deep learning for data processing. In this paper, a deep learning framework based on parallel long and short-term memory(LSTM) and convolutional neural networks(CNN) was proposed to identify DNA-binding protein. This model can not only further extract the information and features of protein sequences, but also the features of evolutionary information. Finally, the two features are combined for training and testing. On the PDB2272 dataset, compared with PDBP_Fusion model, Accuracy(ACC) and Matthew's Correlation Coefficient (MCC) increased by 3.82% and 7.98% respectively. The experimental results of this model have certain advantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and mathematical methods in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.