Abstract

Protein is closely related to life activities. As a kind of protein, DNA-binding protein plays an irreplaceable role in life activities. Therefore, it is very important to study DNA-binding protein, which is a subject worthy of study. Although traditional biotechnology has high precision, its cost and efficiency are increasingly unable to meet the needs of modern society. Machine learning methods can make up for the deficiencies of biological experimental techniques to a certain extent, but they are not as simple and fast as deep learning for data processing. In this paper, a deep learning framework based on parallel long and short-term memory(LSTM) and convolutional neural networks(CNN) was proposed to identify DNA-binding protein. This model can not only further extract the information and features of protein sequences, but also the features of evolutionary information. Finally, the two features are combined for training and testing. On the PDB2272 dataset, compared with PDBP_Fusion model, Accuracy(ACC) and Matthew's Correlation Coefficient (MCC) increased by 3.82% and 7.98% respectively. The experimental results of this model have certain advantages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call