Abstract
Infectious diseases are one of the core biological complications for public health. It is important to recognize the pathogen-specific mechanisms to improve our understanding of infectious diseases. Differentiations between bacterial- and viral-targeted human proteins are important for improving both prognosis and treatment for the patient. Here, we introduce machine learning-based classifiers to discriminate between the two groups of human proteins. We used the sequence, network, and gene ontology features of human proteins. Among different classifiers and features, the deep neural network (DNN) classifier with amino acid composition (AAC), dipeptide composition (DC), and pseudo-amino acid composition (PAAC) (445 features) achieved the best area under the curve (AUC) value (0.939), F1-score (94.9%), and Matthews correlation coefficient (MCC) value (0.81). We found that each of the selected top 100 of the bacteria- and virus-targeted human proteins from a candidate pool of 1618 and 3916 proteins, respectively, were part of distinct enriched biological processes and pathways. Our proposed method will help to differentiate between the bacterial and viral infections based on the targeted human proteins on a global scale. Furthermore, identification of the crucial pathogen targets in the human proteome would help us to better understand the pathogen-specific infection strategies and develop novel therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.