This study addresses sensor allocation by analyzing exponential stability for discrete-time teleoperation systems. Previous studies mostly concentrate on the continuous-time teleoperation systems and neglect the management of significant practical phenomena, such as data-swap, the effect of sampling rates of samplers, and refresh rates of actuators on the system’s stability. A multi-rate sampling approach is proposed in this study, given the isolation of the master and slave robots in teleoperation systems which may have different hardware restrictions. This architecture collects data through numerous sensors with various sampling rates, assuming that a continuous-time controller stabilizes a linear teleoperation system. The aim is to assign each position and velocity signals to sensors with different sampling rates and divide the state vector between sensors to guarantee the stability of the resulting multi-rate sampled-data teleoperation system. Sufficient Krasovskii-based conditions will be provided to preserve the exponential stability of the system. This problem will be transformed into a mixed-integer program with LMIs (linear matrix inequalities). These conditions are also used to design the observers for the multi-rate teleoperation systems whose estimation errors converge exponentially to the origin. The results are validated by numerical simulations which are useful in designing sensor networks for teleoperation systems.