The numerical solution of obstacle problems with 2ndorder semilinear elliptic partial differential equations (PDEs) was addressed. The nonlinear obstacle problem was solved with the monotone iteration method, and the adjoint elliptic differential equations with the Dirichlet boundary conditions on irregular domains were solved with the fictitious domain method. In the calculation process, the conventional finite element discretization resulted in the trouble of computing integrals on the irregular body boundaries with the regular mesh of the extended domain. To overcome this difficulty, a new algorithm was designed based on the finite difference method allowing the use of fast solvers for PDEs. The proposed algorithm has a simple structure and is easily programmable. The numerical simulation of a steady state problem of the logistic population model with diffusion and obstacle to growth shows that the proposed method is feasible and efficient.
Read full abstract