Abstract

The numerical solution of obstacle problems with 2ndorder semilinear elliptic partial differential equations (PDEs) was addressed. The nonlinear obstacle problem was solved with the monotone iteration method, and the adjoint elliptic differential equations with the Dirichlet boundary conditions on irregular domains were solved with the fictitious domain method. In the calculation process, the conventional finite element discretization resulted in the trouble of computing integrals on the irregular body boundaries with the regular mesh of the extended domain. To overcome this difficulty, a new algorithm was designed based on the finite difference method allowing the use of fast solvers for PDEs. The proposed algorithm has a simple structure and is easily programmable. The numerical simulation of a steady state problem of the logistic population model with diffusion and obstacle to growth shows that the proposed method is feasible and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.