Magnetic field regulation is an effective strategy to improve the photocatalytic activity of magnetic semiconductor photocatalysts, but it is not suitable for widely used nonmagnetic photocatalytic semiconductors. Here, we report a Zeeman effect-driven spin-polarized band splitting phenomenon in diluted magnetic semiconductors that show efficient photocatalytic CO2 reduction under visible-light irradiation. A flexible Ni2+-doped BaTiO3 nanofiber film is used as the diluted magnetic semiconductor model to prove this concept. The interstitial Ni2+ dopant induces the spin-polarized bands in Ni-BaTiO3 nanofibers to split under light excitation, generating spin-excited electrons and holes. This Zeeman effect induced by the magnetic field is more obvious since it intensifies the spin-polarized band splitting and generates more spin-excited electrons and holes, suppressing the carrier recombination and extending the carrier lifetime for CO2 photoreduction. As a result, the evolution rates of CO and CH4 are as high as 86.47 and 96.06 μmol/g/h under a small magnetic field of 50 mT. The proposed mechanism of Zeeman effect-driven spin-polarized band splitting is feasible to improve the CO2 photoreduction efficiency of broadly applied diluted magnetic semiconductors.
Read full abstract