Nitroaromatic compounds are highly explosive and illegitimate substances. Over a decade, chemists have been affianced in extensive research on the selective and sensitive detection of these nitroaromatic explosives for homeland security and environmental protection. The benzodiazepine-based enaminone (BDE) receptor has been synthesized by aqueous extract of onion catalyzed three-component reaction between o-phenylenediamine, dimedone with an aldehyde. The BDE probe is well analyzed and applied to a sensor that selectively detects picric acid (PA). UV-Vis and fluorescence spectroscopy were used to investigate the photophysical responses of the receptor (BDE). From the observed results BDE found turn-off fluorescence with the addition of picric acid and the lowest limit of detection and limit of quantification was achieved about 24.6 nM and 73.8 nM. The fluorescence quantum yield was attained about 0.28. The BDE-PA adduct formation was confirmed by 1H NMR titration analysis. The Job's plot analysis was performed through 1H NMR titrations and established the binding stoichiometry ratio of the BDE-PA adduct as 1:1 ratio. Further, DFT calculations supported the observed photophysical responses of BDE-PA adduct to confirm the molecular level interactions. The receptor was effectively applied to approximate level of picric acid in real water sample analysis.
Read full abstract