Abstract

Hand-held, compact and portable sensors for on-site detection of environmental contaminants are in high demand for industry 4.0. Here, we have developed a sensor based on luminescent organic–inorganic metal halide hybrid perovskites nanocrystals (CH3NH3PbBr3) with p-xylylenediamine as an additional capping agent for highly sensitive and selective detection of picric acid (PA), with a good linear range of 1.8 μM–14.3 μM achieving detection of limit (LOD) of 0.3 μM. The electrostatic interaction between PA and the capping ligand of perovskite nanocrystals resulted in significant fluorescence quenching, as revealed by the steady-state and time-resolved spectroscopy. The applicability of the developed sensor for PA detection was validated with a 3D printed device integrating surface mounting device (SMD) and paper microfluidics. This prototype device was successfully applied as a fluorescence turn-off sensor to detect PA, showing great potential for on-site detection. This 3D-printed paper-based microfluidic optical sensor proved very efficient for naked-eye detection of PA with an inbuilt excitation source, avoiding the requirement of expensive and complex instrumentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call