The performance of longitudinal joints in shield tunnel segments is crucial for ensuring structural stability and durability. This study presents an innovative segment structure combining normal concrete (NC) and ultra-high performance concrete (UHPC) (hereafter called NC-UHPC composite segment). Full-scale joint tests were conducted to analyze the mechanical response and failure characteristics of longitudinal joints in these segments. Compared to reinforced concrete (RC) segment joints, NC-UHPC composite segment joints exhibited a significant increase in initial cracking load by 197.93% under sagging moments and 435.3% under hogging moments. The ultimate load-bearing capacity increased by 55.71% and 67.10%, and the initial bending stiffness improved by 20.57% and 10.59% under sagging and hogging moments, respectively. Furthermore, NC-UHPC composite segment joints exhibited smaller crack distribution areas and fewer cracks, indicating superior crack resistance. No cracks or damage were observed at the NC-UHPC interface. Evaluation of joint toughness and ductility indices further highlighted the favorable performance of NC-UHPC composite segment joints. Finally, a refined numerical model was established to compare the deflection and bending stiffness of RC segment joints with NC-UHPC composite segment joints under varying axial forces. The findings suggest that NC-UHPC composite segments are more suitable for tunnel engineering with greater burial depth, higher water pressure, and larger axial forces.
Read full abstract