The selection of calculation parameters for slope excavation support design and the analysis of seepage stability is a significant challenge. This difficulty also hinders the development of slope support engineering. This study examined the right binary structure slope engineering of the K5 + 220–K5 + 770 section of the TJ1A mark of the Jiangkou-Weng’an Highway in Guizhou province. In this study, we propose and use the deep displacement monitoring data and p value test method to check the simulation parameters. Furthermore, the superposition calculation method for steady-state seepage analysis of slope geotechnical structure is proposed. A comparative analysis of the displacement, strain, stress, and safety factor of the slope after the application of pore water pressure was carried out for three slope conditions. The analysis showed that steady-state seepage has a significant effect on the displacement of the slope during the completion of excavation. As a result, a continuous distribution of strain arises on the slope along the interface between the potential sliding surface and the rock–soil layer, and then forms a continuous sliding zone. Additionally, steady-state seepage has a significant effect on the position of the displacement distribution during the initial support of the slope, leading to a significant increase in the extreme value of the shear outlet displacement of the potential slip surface of the slope and in the extreme value of equivalent strain. Finally, steady-state seepage reduces the displacement and equivalent strain upon construction of the secondary slope support. The steady-state seepage has a limited effect on the stress concentration, but reduces the safety factor calculated using the strength reduction method, in all three stages of slope excavation and support. This study enriches the analysis methods for determining the stability of a dual-structure slope during the rainy season, and provides new ideas for the safety and control of slope support projects.