We investigate the role of secondary shock waves (SSWs) generated by cavitation in lithotripsy. Acoustic pressure was measured with a fiber optic probe hydrophone and cavitation using a dual passive cavitation detector (PCD) consisting of two confocal transducers. An artificial stone (∼7 mm diameter and ∼9 mm length) was placed at the focus of an electrohydraulic lithotripter. The fiber was inserted through a hole drilled through the stone so that the tip was at the proximal surface. SSWs were identified by matching the time of arrival to that of the inertial collapse signature acquired by the PCD. Measurements of SSWs were obtained for 50% of SWs fired at 20 kV and 1 Hz. The peak positive pressure for the SSW was p+=33.7±14.8 MPa, which was comparable to the pressure induced by the incident SW (p+=42.6±6 MPa). The peak pressure in water was p+=23.2±4.4 MPa. The PCD also recorded acoustic emissions from forced collapse of pre-existing bubbles caused by the incident SW. We propose that both the reflection from the semi-rigid stone boundary and SSW from the forced collapse contribute to the observed increase in the peak pressure of the incident SW in presence of a stone. [Work supported by NIH.]
Read full abstract