Abstract

The nonideal behavior of condensed explosives with metal particle loading has been studied by many researchers. These previous studies have shown that the explosives behavior is different than that predicted by equilibrium codes (generally lower detonation velocities and pressures are observed or measured), although under many circumstances an increase in performance of metallized explosives is observed. To investigate these phenomena, an unsteady, one-dimensional model is presented that simulates the buildup toward steady detonation of an organic explosive (HMX) containing dispersed aluminum (A1) particles. Heat liberated by secondary oxidation reactions of A1 with the products of the initial decomposition of the explosive is modeled, and parametric studies are presented in which the delay time and the rate of the A1 reactions are varied. Endothermic processes are also considered. Results indicate that induction delay for the A1 particles, combined with endothermic processes, alter the structure of the reaction zones and produce a secondary shock wave that never reaches the detonation wave front. The results of the model are shown to be in agreement with the observed nonideal behaviors of metallized explosives. Future work with the model will include the interaction of the predicted reaction zone structure with a compressible media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.