Abstract

Abstract. The starting process of two-dimensional and axisymmetric nozzle flows has been investigated numerically. Special attention has been paid to the early phase of the starting process and to the appearance of a strong secondary shock wave. For both cases, shock intensities and velocities are obtained and discussed. The flow evolution in the axisymmetric case is proved to be more complex and the transient starting process is slower than in the plane case. Finally, the effects of changing the nozzle angle and the incident shock wave Mach number on the transient flow are addressed. It is shown that a faster start-up can be induced either by decreasing the nozzle angle or increasing the Mach number of the incident shock wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.