Abstract
The effect of incident shock wave strength on the decay of interface introduced perturbations in the refracted shock wave was studied by performing 20 different simulations with varying incident shock wave Mach numbers (M ~ 1.1− 3.5). The analysis showed that the amplitude decay can be represented as a power law model shown in Eq.7, where A is the average amplitude of perturbations (cm), B is the base constant (cm−(E−1), S is the distance travelled by the refracted shockwave (cm), and E is the power constant. The proposed model fits the data well for low incident Mach numbers, while at higher mach numbers the presence of large and irregular late time oscillations of the perturbation amplitude makes it hard for the power law to fit as effectively. When the coefficients from the power law decay model are plotted versus Mach number, a distinct transition region can be seen. This region is likely to result from the transition of the post-shock heavy gas velocity from subsonic to supersonic range in the lab frame. This region separates the data into a high and low Mach number region. Correlations for the power law coefficients to the incident shock Mach number are reported for the high and low Mach number regions. It is shown that perturbations in the refracted shock wave persist even at late times for high incident Mach numbers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have