AbstractThe canonical relationship between the length and the total seasonal rainfall anomalies of the Indian summer monsoon (ISM) is the association of the longer (shorter) season with wetter (drier) seasonal rainfall anomalies. This study shows that such canonical behavior is clearly associated with relatively strong ENSO SST anomalies in the eastern equatorial Pacific Ocean that appear in the boreal summer and fall seasons. The noncanonical relationship is caused by a longer (shorter) season associated with drier (wetter) ISM seasonal rainfall anomalies. A majority of these noncanonical seasons, with anomalously short season length but anomalously high seasonal mean rain, tend to occur under relatively weak La Niña forcing during the boreal summer season. Although the onset of such seasons occurs through canonical ENSO forcing of a large-scale meridional temperature gradient, the demise is dictated by the depletion of moist static energy from the underlying cooling of the upper ocean in the northern Indian Ocean. This is due to stronger meridional Ekman ocean heat transport forced by the stronger low-level atmospheric southwesterlies than those in the corresponding canonical wet ISM season.
Read full abstract